본 글에서는 대표적인 데이터마이닝 프로그램인 WEKA를 사용하여 의사결정트리 분류 분석을 수행하는 방법을 설명합니다. 프로그램을 설치하면 기본적으로 제공되는 Weather 데이터를 사용하여 분석을 해보았습니다.

Weka 시작하기

weka 프로그램 설치와 실행을 성공하였으니 간단하게 프로그램을 사용해보도록 하자.
첫 화면에서 하단에 4개의 버튼이 보이는데 그 중 [Explorer]를 클릭한다.
그러면 아래의 오른쪽 그림과 같은 화면이 생성된다.



* 전처리 부분에서 첫 번째 메뉴인 [Open file...]을 클릭한 후, [iris.arff] 파일을 선택한다.
  ( arff 파일은 weka 프로그램의 입력 형식을 따르는 데이터 파일이다. )



선택한 데이터에 대하여 아래와 같이 데이터의 기본 속성 및 분포가 표시된다.
( weka는 텍스트 파일 뿐 아니라 DB를 통해서도 사용할 수 있도록 지원하고 있다. )



오른쪽 중간 위치의 [Visualize All] 버튼을 클릭하면 데이터의 각 속성에 대한 분포를 그림으로 보여준다.
( 데이터를 처음 이해할 때 챠트 분석을 통해 이해하는 것은 쉬우면서도 필수적인 과정이다. )

5개의 속성에 대하여 챠트가 그려진다. 챠트의 색상은 타겟 클래스 값으로 구분된 것이다.




Weka 분류(J48/C4.5) 분석 해보기

이번에는 날씨에 관련된 다른 데이터를 선택하고 분석을 수행해보도록 하자.

이 데이터는 날씨에 따라 Play 여부를 기록한 데이터이다. 날씨의 어떠함에 따라 운동경기를 했는지, 안했는지의 과거 정보들을 기록해둔 데이터이다. 이 데이터를 분석하면 어떤 날씨 조건에서 운동을 하는 것이 좋은 가에 대한 유용한 지식을 얻을 수 있을 것이다.

먼저 데이터를 이해하기 위해 설명한다. wether.nomial.csv 파일은 메모장으로 열면 아래와 같다.

Excel 프로그램으로 파일을 열면 오른쪽 그림과 같이 볼 수 있다.



csv 파일 형식은 각 데이터의 요소들을 콤마(,)로 구분한 텍스트 파일이다. 따라서 위와 같이 메모장이나 글 같은 워드프로세서 프로그램으로 열 수 있다. 그리고 위와 같이 엑셀 프로그램을 사용하여 열면 좀 더 보기 좋게 표시된다.

위 파일을 Weka에서 입력으로 받아 분석하기 위해서는 ARFF 형식으로 변경해주어야 한다. CSV 형식은 WEKA 프로그램에서 입력으로 허용하지 않는다. ARFF 형식으로 변경한 결과는 아래와 같다.

ARFF 형식은 왼쪽 그림과 같이 @relation, @attribute, @data 의 3개의 영역으로 표현된다.
각 내용은 아래와 같이 입력한다.

@relation 데이터명칭

@attribute 속성이름 {범주형의 값 리스트 }
본 데이터셋은 5개의 범주형 속성으로 구성되었다.

@data
하단에 한 줄에 하나의 레코드(인스턴스)를 기록함.
본 데이터셋은 14개의 레코드가 입력되었다.

데이터는 범주형 속성 뿐 아니라 수치형 속성을 포함할 수도 있다.
위에서 소개한 Weather 데이터의 원래 형태는 아래와 같이 수치형으로 구성되어 있다.



위의 파일과 같이 수치형 속성을 포함했을 때의 ARFF 파일을 생성하는 방법을 예를 통해 설명하겠다.

위 파일을 ARFF 형식으로 변환한 결과는 아래와 같다.

 
위에서 설명한 바와 같이 @attribute 라인을 통해 각 속성에 대한 정보를 기록한다. 이 때, 범주형 속성과 수치형 속성을 구분하여 기록해주어야 한다.

(1) 범주형 속성
@attribute 속성이름 {범주형의 값 리스트 }
본 데이터셋은 5개의 범주형 속성으로 구성되었다.

(2) 수치형 속성
@attribute 속성이름 real

즉, 수치형 속성은 속성의 이름을 적어 준 후, 뒤에 real 이라고만 기록해주면 된다. 범주형 속성의 경우 값을 모두 적어주지만, 수치형은 간단하다.



통계 또는 데이터마이닝 등의 분석 프로그램에서는 입력데이터의 속성을 지정해주어야 한다. 다양하게 요구하는 프로램도 있지만, Weka에서는 2개의 속성 즉, ➀범주형 속성, ➁수치형 속성으로만 구분한다. 범주형 속성은 Categorial 또는 Nominal 속성으로 불려진다. 그리고 수치형 속성은 보통 numeric 속성으로 불려진다.  

@attribute 정의 부분에서 맨 아래쪽에 기입한 속성이 분석의 목표가 되는 속성으로 인식된다. 
그럼, 위에서 설명하고 준비한 weather.nominal.arff 파일을 Weka를 사용하여 분석해보도록 하자. 초기화면에서 [Open file...]을 클릭하여 해당 파일을 선택하면, 아래 그림과 같이 표시된다.




좌측 중간 화면에 5개의 속성의 이름이 표시된 것을 볼 수 있다. 특정 속성에 대한 체크박스를 클릭하면, 오른쪽 부분에 각 속성의 통계 분석이 표시된다.



그림에서 파랑색은 play 속성이 Yes 값을 갖는 경우이고, 빨강색은 play 속성이 No 값을 갖는 경우를 구분한 것이다. 즉 해석하면, Outlook(조망)이 Sunny(맑음)인 경우는 안하는 경우가 약간많고, Overcast(흐림)인 경우 100% 운동을 하고, Rainy(비옴)인 경우도 경기하는 비율이 약간 높음을 볼 수 있다. 온도에 따라서는 크게 비율의 차이가 없는 것으로 보인다.

그럼, 대표적인 데이터마이닝 분석 방법인 C4.5 의사결정트리 알고리즘을 사용하여 분석해보도록 하자. Weka에서는 C4.5 알고리즘을 J4.8 이라는 이름으로 제공하고 있다.  

단계1. 데이터를 선택한다. (우리는 이미 전 단계에서 weather.arff 파일을 선택하였다. )

단계2. 메뉴에서 [Classify]를 선택한다. 왼쪽 상단의 [Choose] 버튼을 클릭한 후 trees 항목에 속해있는 J48 알고리즘을 선택한다.



단계3. 왼쪽 중간 부분의 [Start] 버튼을 클릭하면, J48 분석을 수행을 시작한다.
          데이터의 크기가 작으므로 잠깐만 기다리면 오른쪽에 결과가 텍스트 형식으로 출력된다.



  위에서 수행한 Weather 데이터에 대한 J48 알고리즘의 수행결과를 분석해보도록 하자. 텍스트 결과 전체를 아래의 그림에 표시하였다. 데이터에 대한 설명과 트리 결과 모델 그리고 데이터를 구분하여 검증한 결과들을 보여준다.  

  아래의 결과에서 가장 중요한 부분은 빨강색으로 표시한 트리(tree) 부분이다. 운동 경기(play)에 영향을 주는 속성은 조명(outlook), 습도(humidity), 풍량(windy)으로 분석되었다. 가장 중요한 속성은 조망(outlook)이다.

=== Run information ===

Scheme  :     weka.classifiers.trees.J48 -C 0.25 -M 2
Relation  :     weather
Instances :     14
Attributes :     5    ( outlook , temperature, humidity, windy, play )

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree
------------------
outlook = sunny
|   humidity <= 75: yes (2.0)
|   humidity > 75: no (3.0)
outlook = overcast: yes (4.0)
outlook = rainy
|   windy = TRUE: no (2.0)
|   windy = FALSE: yes (3.0)

Number of Leaves  :  5
Size of the tree :  8

Time taken to build model: 0.03 seconds

=== Stratified cross-validation ===

=== Summary ===
Correctly Classified Instances           9               64.2857 %
Incorrectly Classified Instances         5               35.7143 %
Kappa statistic                          0.186
Mean absolute error                      0.2857
Root mean squared error                  0.4818
Relative absolute error                 60      %
Root relative squared error             97.6586 %
Total Number of Instances               14    

=== Detailed Accuracy By Class ===
TP Rate   FP Rate   Precision   Recall  F-Measure   Class
  0.778     0.6        0.7       0.778     0.737    yes
  0.4       0.222      0.5       0.4       0.444    no

=== Confusion Matrix ===
 a b   <-- classified as
 7 2 | a = yes
 3 2 | b = no 



위의 텍스트로 된 Tree 결과를 시각적으로 표시하면 의미를 쉽게 이해할 수 있다. Weka에서는 텍스트 뿐 아니라 시각적인 기능도 제공하고 있다. 왼쪽 하단의 [Result list] 부분에서 방금 수행된 [tree.J48] 항목에서 마우스 오른쪽 버튼을 누른 후 [Visualzie tree]를 클릭한다.



아래와 같은 시각화된 의사결정트리를 볼 수 있다.



이상으로 Weka 를 설치하고 간단히 사용해 보는 연습을 마치겠습니다.



 



 


 

by 에이아이 2009.08.01 23:41